Purpose:

The macro performs an automated forward selection and stepwise variable selection process for PROC GENMOD which does not come with model selection options. Note that the GENMOD procedure in SAS versions prior to 9.4 does not come with model selection options.

Introduction:

SAS users of SAS 9.2 and prior versions may face situations where some "powerful" options are only available in certain SAS procedures but not available in others. For example, the model selection options are available in PROC REG, LOGISTIC, PHREG, etc., but not in PROC GENMOD, CATMOD, MIXED, etc. This forward/stepwise selection macro could be used with the procedures GENNMOD, CATMOD, MIXED, GLIMMIX, etc.

Illustration:

  • Dataset used in this code: claim_history.sas7bdat or claim_history.csv
  • The claim_history.sas7bdat dataset comes from the help library of SAS Enterprise-Miner version 7.1
  • Data description: observations: 10302, Variables: 27

Let's accesss to the SAS dataset claim_history.sas7bdat:

libname mydata "/folders/myfolders/";

11   ods listing close;ods html5 file=stdout options(bitmap_mode='inline') device=png; ods graphics on / outputfmt=png;
NOTE: Writing HTML5 Body file: STDOUT
12
13 libname mydata "/folders/myfolders/";
NOTE: Libref MYDATA was successfully assigned as follows:
Engine: V9
Physical Name: /folders/myfolders
14 ods html5 close;ods listing;

15

Let's take a look to the first 5 observations:

proc print data=mydata.claim_history (obs=5);
run;
SAS Output

SAS Output

The SAS System

The PRINT Procedure

Data Set MYDATA.CLAIM_HISTORY

Obs ID KIDSDRIV BIRTH AGE HOMEKIDS YOJ INCOME PARENT1 HOME_VAL MSTATUS GENDER EDUCATION OCCUPATION TRAVTIME CAR_USE BLUEBOOK TIF CAR_TYPE RED_CAR OLDCLAIM CLM_FREQ REVOKED MVR_PTS CLM_AMT CAR_AGE CLAIM_FLAG URBANICITY
1 63581743 0 16MAR39 60 0 11 $67,349 No $0 z_No M PhD Professional 14 Private $14,230 11 Minivan yes $4,461 2 No 3 $0 18 0 Highly Urban/ Urban
2 132761049 0 21JAN56 43 0 11 $91,449 No $257,252 z_No M z_High School z_Blue Collar 22 Commercial $14,940 1 Minivan yes $0 0 No 0 $0 1 0 Highly Urban/ Urban
3 921317019 0 18NOV51 48 0 11 $52,881 No $0 z_No M Bachelors Manager 26 Private $21,970 1 Van yes $0 0 No 2 $0 10 0 Highly Urban/ Urban
4 727598473 0 05MAR64 35 1 10 $16,039 No $124,191 Yes z_F z_High School Clerical 5 Private $4,010 4 z_SUV no $38,690 2 No 3 $0 10 0 Highly Urban/ Urban
5 450221861 0 05JUN48 51 0 14 . No $306,251 Yes M <High School z_Blue Collar 32 Private $15,440 7 Minivan yes $0 0 No 0 $0 6 0 Highly Urban/ Urban

Using PROC CONTENTS we have a summary of the dataset. The varnum option prints the list of the variable names in the order of their logical position in the data set. By default, the CONTENTS statement lists the variables alphabetically.

proc contents data=mydata.claim_history varnum;
run;
SAS Output

SAS Output

The SAS System

The CONTENTS Procedure

The CONTENTS Procedure

MYDATA.CLAIM_HISTORY

Attributes

Data Set Name MYDATA.CLAIM_HISTORY Observations 10302
Member Type DATA Variables 27
Engine V9 Indexes 0
Created 06/02/2011 04:36:18 Observation Length 224
Last Modified 06/02/2011 04:36:18 Deleted Observations 0
Protection   Compressed NO
Data Set Type   Sorted NO
Label      
Data Representation WINDOWS_64    
Encoding us-ascii ASCII (ANSI)    

Engine/Host Information

Engine/Host Dependent Information
Data Set Page Size 16384
Number of Data Set Pages 144
First Data Page 1
Max Obs per Page 72
Obs in First Data Page 54
Number of Data Set Repairs 0
Filename /folders/myfolders/claim_history.sas7bdat
Release Created 9.0301M0
Host Created X64_PRO
Inode Number 25
Access Permission rwxrwx---
Owner Name root
File Size 2MB
File Size (bytes) 2360320

Varnum

Variables in Creation Order
# Variable Type Len Format Informat Label
1 ID Char 10     Identification#
2 KIDSDRIV Num 8 4.   #Driving Children
3 BIRTH Num 8 DATE7.   Date of Birth
4 AGE Num 8 4.   Age
5 HOMEKIDS Num 8 4.   #Children @Home
6 YOJ Num 8 4.   Years on Job
7 INCOME Num 8 DOLLAR10.   Income
8 PARENT1 Char 3     Single Parent
9 HOME_VAL Num 8 DOLLAR10.   Home Value
10 MSTATUS Char 5     Marital Status
11 GENDER Char 3 $3. $3. Driver Gender
12 EDUCATION Char 13     Max Education Level
13 OCCUPATION Char 13 $13. $13. Driver Occupation
14 TRAVTIME Num 8 4.   Distance to Work
15 CAR_USE Char 10     Vehicle Use
16 BLUEBOOK Num 8 DOLLAR10.   Value of Vehicle
17 TIF Num 8     Time in Force
18 CAR_TYPE Char 11     Type of Car
19 RED_CAR Char 3     A Red Car
20 OLDCLAIM Num 8 DOLLAR12.   Total Claims(Past 5 Years)
21 CLM_FREQ Num 8     #Claims(Past 5 Years)
22 REVOKED Char 3     License Revoked (Past 7 Years)
23 MVR_PTS Num 8 5.   Motor Vehicle Record Points
24 CLM_AMT Num 8 DOLLAR12.   Claim Amount
25 CAR_AGE Num 8 4.   Vehicle Age
26 CLAIM_FLAG Num 8     Claim Indicator
27 URBANICITY Char 21     Home/Work Area

Interesting target varaibles could be:

CLAIM_FLAG : binary variable 1 if claim occurred and 0 otherwise CLM_AMT: claim amount including 0 CLM_FRQ: number of claims takes the values 0, 1, 2, etc EXPO: the exposition, I added this variable, takes the value 1 always

  • For a Binomial (logistic model) the target should be CLAIM_FLAG
  • For a Severity model using Gamma, Inverse Gaussian or Log Normal the target should be CLM_AMT without the cero values
  • For a Frequency model using Poisson or Negative Binomial and the Zero Inflated Poisson and Zero Inflated Negative Binomial, the target should be CLM_FRQ
  • For the Cost of Claim model (or risk premium) it is possible to use the CLM_AMT including the cero values In this example I perform a stepwise variable selection using the variable CLM_AMT (with ceros) as the target for an Tweedie model.

The next lines contain the two SAS macros for the forward selection/stepwise selection process using a Tweedie error function.

*-------------------------------------------------------------------------*;
*STEPWISE SELECTON MACRO FOR PROC GENMOD;
*-------------------------------------------------------------------------*;

*
The first part of the macro is the construction of all single factor
models and saving their results in a dataset (aggregated), where those
with p-values greater than 0.2 could be easily filtered out
;

************************** MACRO PARAMETERS *******************************;

*Put the name of the modeling dataset:;

%let dataset = mydata.claim_history;

*Put here the name of the name of the target varible;

%let target = CLM_AMT;

*Put here the name of all the potential explanatory variables, the
categorical and the coninous:;

%let explanatory =
GENDER
CAR_USE
EDUCATION
CAR_TYPE
MSTATUS
OCCUPATION
RED_CAR
URBANICITY
REVOKED
PARENT1
AGE
BIRTH
BLUEBOOK
CAR_AGE
HOMEKIDS
HOME_VAL
INCOME
KIDSDRIV
MVR_PTS
TIF
TRAVTIME
YOJ
;

*Put the name of the character variables with commas:;

%let char=
"GENDER"       ,
"CAR_USE"      ,
"EDUCATION"    ,
"CAR_TYPE"     ,
"MSTATUS"      ,
"OCCUPATION"   ,
"RED_CAR"      ,
"URBANICITY"   ,
"REVOKED"      ,
"PARENT1"
;

*Put the name of the character variables with commas:;

%let char_2=
GENDER       ,
CAR_USE      ,
EDUCATION    ,
CAR_TYPE     ,
MSTATUS      ,
OCCUPATION   ,
RED_CAR      ,
URBANICITY   ,
REVOKED      ,
PARENT1
;

*Put the name of the continous variables. Include the target variable also:;

%let interval =
CLM_AMT
AGE
BIRTH
BLUEBOOK
CAR_AGE
HOMEKIDS
HOME_VAL
INCOME
KIDSDRIV
MVR_PTS
TIF
TRAVTIME
YOJ
;

*In order to minimize the number of models that needed to be run, a stepwise
selection model was created, considering susceptible for entry all those
variables with a p-value in a single model less than 0.2, and with a p-value
in the aggregated model of less than 0.25;

%let single_model=0.2;
%let aggregated_model=0.05;

*Set the power Tweedie distribution parameter;

%let power = 1.5;

************************** END MACRO PARAMETERS ****************************;


/* Creation of the Aggregated Data Set*/


data explanatory;
    set /*tmp1*/
    &dataset
        (keep= &explanatory);
run;

proc contents data = explanatory varnum nodetails noprint
    out=explanatory_names (keep=name);
run;

data explanatory_names;
    set explanatory_names;
    j = _n_;
run;

* Determine the number of observations;
data _NULL_;
    if 0 then
        set explanatory_names nobs=n;
    call symputx('nrows',n);
    stop;
run;

proc datasets lib = work nolist;
    delete pva;
run;

options minoperator mlogic mprint;
%macro agrega / mindelimiter=',';
    %do obs = 1 %to &nrows;

data _null_;
    set explanatory_names;

    if j = &obs then
        call symputx("var", put(name, 30.));
run;

%if %upcase(&var) in(&char_2) %then
    %do;
        ods output Type3=pva&obs (rename=source=parm keep=source ProbChiSq);

        proc genmod data=&dataset NAMELEN=50;
            if _resp_ > 0 then
                d = 2*(_resp_*(_resp_**(1-&power)-_mean_**(1-&power))/
                      (1-&power)-(_resp_**(2-&power)-_mean_**(2-&power))/
                      (2-&power));
            else d = 2* _mean_**(2-&power)/(2-&power);
            variance var = _mean_**&power;
            deviance dev = d;
            class &var;
            model &target =  &var / link=log type3 scale=pearson;

            *scwgt expos;
            title "&var";
        run;

    %end;
%else
    %do;
        ods output Type3=pva&obs (rename=source=parm keep=source ProbChiSq);

        proc genmod data=&dataset NAMELEN=50;
            if _resp_ > 0 then
                d = 2*(_resp_*(_resp_**(1-&power)-_mean_**(1-&power))/
                      (1-&power)-(_resp_**(2-&power)-_mean_**(2-&power))/
                      (2-&power));
            else d = 2* _mean_**(2-&power)/(2-&power);
            variance var = _mean_**&power;
            deviance dev = d;
            model &target =  &var / link=log type3 scale=pearson;

            *scwgt expos;
            title "&var";
        run;

    %end;

data pva&obs;
    length parm $30;
    set pva&obs;
run;

proc append base=pva data=pva&obs force;
run;

    %end;
%mend agrega;

%agrega;

ods select all;

proc sort data=pva out=aggregate;
    by ProbChiSq;
run;

data elegibles;
    set aggregate;
    where probchisq le &single_model;
run;

proc sort data = elegibles;
    by probchisq;
run;

data elegibles;
    set elegibles;
    rename parm = source;
run;

title "Aggregate (all potential explanatory variables)";

proc print data=aggregate;
run;

title "Elegibles (individual model threshold = &single_model)";

proc print data=elegibles;
run;

/* STEPWISE PROCESS */

%let i = 1;

proc sql noprint;
    select count(source) into: totalfactor from elegibles;
quit;
* Also, the necessary set of macro variables needed to be initialized
as null, as the variables had to exist in order to be used in the rest
of the code;

%let catvar=;
%let invars=;
%let tempvar=;
%let tempcat=;

*options NOSYNTAXCHECK;/*Use this oiption before the last macro called
ONE only if you are sure that the failure of the macro is due to a lack
of convergence problem*/
options mlogic;

%macro one;
    %do %while (&i le &totalfactor);

data elegibles;
    set elegibles;

    if _n_ = 1 then
        do;
            call symput('testvar',source);

            if upcase(source) in (&char) then
                do;
                    call symput('catvar_t',source);
                end;
            else
                do;
                    call symput('catvar_t','');
                end;

            delete;
        end;
run;

title "Step &i";
title2 "Elegibles (aggregated model threshold = &aggregated_model)";
ods output parameterestimates = parms type3 = type3;

proc genmod data=&dataset NAMELEN=50;
    if _resp_ > 0 then
        d = 2*(_resp_*(_resp_**(1-&power)-_mean_**(1-&power))/
              (1-&power)-(_resp_**(2-&power)-_mean_**(2-&power))/
              (2-&power));
    else d = 2* _mean_**(2-&power)/(2-&power);
    variance var = _mean_**&power;
    deviance dev = d;
    class &catvar &catvar_t;
    model &target = &invars &testvar / link=log type3 scale=pearson;

    *scwgt expos;
run;

data stay;
    set type3;

    If source = "&testvar" and probchisq le &aggregated_model then
        do;
            call symput ('invars',"&tempvar"||" "||strip("&testvar"));
            call symput ('catvar',"&tempcat"||" "||strip("&catvar_t"));
        end;
    else if source = "&testvar" then
        delete;
run;

%let tempvar = &invars;
%let tempcat = &catvar;
%let i = %eval(&i+1);
    %end;
%mend one;

%one;

title "Selected Variables";
proc print data=stay;
run;


proc datasets lib=work kill nolist;
run;
SAS Output

SAS Output

AGE

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10295
Missing Values 7

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1698096.5556 164.9759
Scaled Deviance 1E4 4388.7446 0.4264
Pearson Chi-Square 1E4 3982575.8019 386.9208
Scaled Pearson X2 1E4 10293.0000 1.0000
Log Likelihood   -2194.3723  
Full Log Likelihood   -2194.3723  
AIC (smaller is better)   4392.7446  
AICC (smaller is better)   4392.7457  
BIC (smaller is better)   4407.2234  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 8.0125 0.1532 7.7122 8.3127 2735.30 <.0001
AGE 1 -0.0157 0.0034 -0.0223 -0.0090 21.37 <.0001
Scale 0 19.6703 0.0000 19.6703 19.6703    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
AGE 1 10293 21.38 <.0001 21.38 <.0001

BIRTH

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1698613.6229 164.9139
Scaled Deviance 1E4 4390.8952 0.4263
Pearson Chi-Square 1E4 3984545.1374 386.8490
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2195.4476  
Full Log Likelihood   -2195.4476  
AIC (smaller is better)   4394.8952  
AICC (smaller is better)   4394.8964  
BIC (smaller is better)   4409.3754  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.3961 0.0352 7.3272 7.4650 44271.0 <.0001
BIRTH 1 0.0000 0.0000 0.0000 0.0001 21.65 <.0001
Scale 0 19.6685 0.0000 19.6685 19.6685    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
BIRTH 1 10300 21.67 <.0001 21.67 <.0001

BLUEBOOK

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1706973.9072 165.7256
Scaled Deviance 1E4 4470.9067 0.4341
Pearson Chi-Square 1E4 3932497.8968 381.7959
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2235.4534  
Full Log Likelihood   -2235.4534  
AIC (smaller is better)   4474.9067  
AICC (smaller is better)   4474.9079  
BIC (smaller is better)   4489.3869  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.3348 0.0649 7.2076 7.4619 12778.6 <.0001
BLUEBOOK 1 -0.0000 0.0000 -0.0000 0.0000 0.06 0.8052
Scale 0 19.5396 0.0000 19.5396 19.5396    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
BLUEBOOK 1 10300 0.06 0.8052 0.06 0.8052

CAR_AGE

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9663
Missing Values 639

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9661 1586495.1297 164.2165
Scaled Deviance 9661 4253.9588 0.4403
Pearson Chi-Square 9661 3603027.2294 372.9456
Scaled Pearson X2 9661 9661.0000 1.0000
Log Likelihood   -2126.9794  
Full Log Likelihood   -2126.9794  
AIC (smaller is better)   4257.9588  
AICC (smaller is better)   4257.9601  
BIC (smaller is better)   4272.3109  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.6138 0.0537 7.5086 7.7190 20123.0 <.0001
CAR_AGE 1 -0.0380 0.0056 -0.0491 -0.0269 45.35 <.0001
Scale 0 19.3118 0.0000 19.3118 19.3118    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
CAR_AGE 1 9661 45.45 <.0001 45.45 <.0001

CAR_TYPE

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1681629.5822 163.3284
Scaled Deviance 1E4 4456.8663 0.4329
Pearson Chi-Square 1E4 3884805.3657 377.3121
Scaled Pearson X2 1E4 10296.0000 1.0000
Log Likelihood   -2228.4332  
Full Log Likelihood   -2228.4332  
AIC (smaller is better)   4468.8663  
AICC (smaller is better)   4468.8745  
BIC (smaller is better)   4512.3069  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.3614 0.0574 7.2489 7.4740 16428.0 <.0001
CAR_TYPE Minivan 1 -0.5177 0.0887 -0.6916 -0.3438 34.05 <.0001
CAR_TYPE Panel Truck 1 0.1938 0.1158 -0.0333 0.4208 2.80 0.0944
CAR_TYPE Pickup 1 0.1061 0.0916 -0.0734 0.2856 1.34 0.2465
CAR_TYPE Sports Car 1 0.1286 0.1042 -0.0757 0.3329 1.52 0.2172
CAR_TYPE Van 1 0.1367 0.1138 -0.0863 0.3597 1.44 0.2295
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.4245 0.0000 19.4245 19.4245    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
CAR_TYPE 5 10296 13.45 <.0001 67.23 <.0001

CAR_USE

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
CAR_USE 2 Commercial Private

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1673000.3058 162.4272
Scaled Deviance 1E4 4682.8127 0.4546
Pearson Chi-Square 1E4 3679819.0220 357.2640
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2341.4063  
Full Log Likelihood   -2341.4063  
AIC (smaller is better)   4686.8127  
AICC (smaller is better)   4686.8138  
BIC (smaller is better)   4701.2929  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.0618 0.0401 6.9832 7.1403 31050.5 <.0001
CAR_USE Commercial 1 0.5897 0.0605 0.4711 0.7083 94.98 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 18.9014 0.0000 18.9014 18.9014    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
CAR_USE 1 10300 95.16 <.0001 95.16 <.0001

EDUCATION

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
EDUCATION 5 <High School Bachelors Masters PhD z_High School

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1688602.6626 163.9898
Scaled Deviance 1E4 4311.4923 0.4187
Pearson Chi-Square 1E4 4032836.0281 391.6516
Scaled Pearson X2 1E4 10297.0000 1.0000
Log Likelihood   -2155.7462  
Full Log Likelihood   -2155.7462  
AIC (smaller is better)   4321.4923  
AICC (smaller is better)   4321.4982  
BIC (smaller is better)   4357.6928  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.5186 0.0556 7.4097 7.6276 18287.1 <.0001
EDUCATION <High School 1 0.0070 0.0954 -0.1799 0.1939 0.01 0.9412
EDUCATION Bachelors 1 -0.2586 0.0823 -0.4199 -0.0974 9.88 0.0017
EDUCATION Masters 1 -0.5015 0.0935 -0.6847 -0.3183 28.79 <.0001
EDUCATION PhD 1 -0.5550 0.1264 -0.8028 -0.3072 19.27 <.0001
EDUCATION z_High School 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.7902 0.0000 19.7902 19.7902    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
EDUCATION 4 10297 11.74 <.0001 46.97 <.0001

GENDER

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
GENDER 2 M z_F

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1706952.2396 165.7235
Scaled Deviance 1E4 4497.9946 0.4367
Pearson Chi-Square 1E4 3908765.8941 379.4918
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2248.9973  
Full Log Likelihood   -2248.9973  
AIC (smaller is better)   4501.9946  
AICC (smaller is better)   4501.9958  
BIC (smaller is better)   4516.4748  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.3108 0.0421 7.2284 7.3933 30210.9 <.0001
GENDER M 1 0.0212 0.0617 -0.0997 0.1422 0.12 0.7309
GENDER z_F 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.4806 0.0000 19.4806 19.4806    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
GENDER 1 10300 0.12 0.7309 0.12 0.7309

HOMEKIDS

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1689995.2928 164.0772
Scaled Deviance 1E4 4432.9394 0.4304
Pearson Chi-Square 1E4 3926728.9627 381.2358
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2216.4697  
Full Log Likelihood   -2216.4697  
AIC (smaller is better)   4436.9394  
AICC (smaller is better)   4436.9406  
BIC (smaller is better)   4451.4196  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.1720 0.0381 7.0973 7.2467 35416.1 <.0001
HOMEKIDS 1 0.1774 0.0265 0.1253 0.2294 44.63 <.0001
Scale 0 19.5253 0.0000 19.5253 19.5253    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
HOMEKIDS 1 10300 44.60 <.0001 44.60 <.0001

HOME_VAL

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9727
Missing Values 575

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9725 1566648.4881 161.0950
Scaled Deviance 9725 3918.5322 0.4029
Pearson Chi-Square 9725 3888102.9007 399.8049
Scaled Pearson X2 9725 9725.0000 1.0000
Log Likelihood   -1959.2661  
Full Log Likelihood   -1959.2661  
AIC (smaller is better)   3922.5322  
AICC (smaller is better)   3922.5335  
BIC (smaller is better)   3936.8976  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.6306 0.0485 7.5356 7.7257 24762.2 <.0001
HOME_VAL 1 -0.0000 0.0000 -0.0000 -0.0000 80.39 <.0001
Scale 0 19.9951 0.0000 19.9951 19.9951    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
HOME_VAL 1 9725 80.75 <.0001 80.75 <.0001

INCOME

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9732
Missing Values 570

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9730 1599342.3505 164.3723
Scaled Deviance 9730 4062.1617 0.4175
Pearson Chi-Square 9730 3830866.9990 393.7171
Scaled Pearson X2 9730 9730.0000 1.0000
Log Likelihood   -2031.0808  
Full Log Likelihood   -2031.0808  
AIC (smaller is better)   4066.1617  
AICC (smaller is better)   4066.1629  
BIC (smaller is better)   4080.5280  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.5716 0.0525 7.4688 7.6745 20823.5 <.0001
INCOME 1 -0.0000 0.0000 -0.0000 -0.0000 35.13 <.0001
Scale 0 19.8423 0.0000 19.8423 19.8423    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
INCOME 1 9730 35.25 <.0001 35.25 <.0001

KIDSDRIV

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1692668.0870 164.3367
Scaled Deviance 1E4 4546.2696 0.4414
Pearson Chi-Square 1E4 3834898.2829 372.3202
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2273.1348  
Full Log Likelihood   -2273.1348  
AIC (smaller is better)   4550.2696  
AICC (smaller is better)   4550.2707  
BIC (smaller is better)   4564.7497  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.2477 0.0327 7.1836 7.3118 49058.0 <.0001
KIDSDRIV 1 0.3322 0.0535 0.2273 0.4372 38.49 <.0001
Scale 0 19.2956 0.0000 19.2956 19.2956    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
KIDSDRIV 1 10300 38.49 <.0001 38.49 <.0001

MSTATUS

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
MSTATUS 2 Yes z_No

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1680334.3971 163.1393
Scaled Deviance 1E4 4294.3175 0.4169
Pearson Chi-Square 1E4 4030313.1231 391.2925
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2147.1588  
Full Log Likelihood   -2147.1588  
AIC (smaller is better)   4298.3175  
AICC (smaller is better)   4298.3187  
BIC (smaller is better)   4312.7977  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.5995 0.0461 7.5091 7.6899 27135.5 <.0001
MSTATUS Yes 1 -0.5193 0.0630 -0.6426 -0.3959 68.04 <.0001
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.7811 0.0000 19.7811 19.7811    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
MSTATUS 1 10300 68.14 <.0001 68.14 <.0001

MVR_PTS

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1650834.0945 160.2752
Scaled Deviance 1E4 4359.0689 0.4232
Pearson Chi-Square 1E4 3900739.2469 378.7125
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2179.5345  
Full Log Likelihood   -2179.5345  
AIC (smaller is better)   4363.0689  
AICC (smaller is better)   4363.0701  
BIC (smaller is better)   4377.5491  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 6.9858 0.0414 6.9046 7.0670 28440.6 <.0001
MVR_PTS 1 0.1570 0.0129 0.1316 0.1824 147.05 <.0001
Scale 0 19.4605 0.0000 19.4605 19.4605    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
MVR_PTS 1 10300 148.30 <.0001 148.30 <.0001

OCCUPATION

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9637
Missing Values 665

Class Level Information

Class Level Information
Class Levels Values
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9629 1539333.7461 159.8643
Scaled Deviance 9629 4315.4756 0.4482
Pearson Chi-Square 9629 3434672.3299 356.7008
Scaled Pearson X2 9629 9629.0000 1.0000
Log Likelihood   -2157.7378  
Full Log Likelihood   -2157.7378  
AIC (smaller is better)   4331.4756  
AICC (smaller is better)   4331.4906  
BIC (smaller is better)   4388.8625  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.6388 0.0585 7.5242 7.7534 17058.5 <.0001
OCCUPATION Clerical 1 -0.2503 0.0949 -0.4363 -0.0644 6.96 0.0083
OCCUPATION Doctor 1 -1.2850 0.2231 -1.7223 -0.8477 33.17 <.0001
OCCUPATION Home Maker 1 -0.4255 0.1221 -0.6648 -0.1862 12.15 0.0005
OCCUPATION Lawyer 1 -0.7064 0.1193 -0.9401 -0.4726 35.07 <.0001
OCCUPATION Manager 1 -1.1199 0.1197 -1.3544 -0.8854 87.58 <.0001
OCCUPATION Professional 1 -0.3298 0.0999 -0.5255 -0.1340 10.90 0.0010
OCCUPATION Student 1 -0.0553 0.1112 -0.2733 0.1627 0.25 0.6190
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 18.8865 0.0000 18.8865 18.8865    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
OCCUPATION 7 9629 19.07 <.0001 133.47 <.0001

PARENT1

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
PARENT1 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1678806.3557 162.9909
Scaled Deviance 1E4 4278.4470 0.4154
Pearson Chi-Square 1E4 4041584.5692 392.3869
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2139.2235  
Full Log Likelihood   -2139.2235  
AIC (smaller is better)   4282.4470  
AICC (smaller is better)   4282.4482  
BIC (smaller is better)   4296.9272  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.8957 0.0751 7.7485 8.0428 11057.7 <.0001
PARENT1 No 1 -0.6988 0.0827 -0.8609 -0.5368 71.43 <.0001
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.8088 0.0000 19.8088 19.8088    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
PARENT1 1 10300 71.84 <.0001 71.84 <.0001

RED_CAR

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
RED_CAR 2 no yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1706934.0985 165.7218
Scaled Deviance 1E4 4491.8099 0.4361
Pearson Chi-Square 1E4 3914106.2510 380.0103
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2245.9050  
Full Log Likelihood   -2245.9050  
AIC (smaller is better)   4495.8099  
AICC (smaller is better)   4495.8111  
BIC (smaller is better)   4510.2901  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.3402 0.0570 7.2285 7.4520 16564.3 <.0001
RED_CAR no 1 -0.0276 0.0678 -0.1604 0.1052 0.17 0.6838
RED_CAR yes 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.4939 0.0000 19.4939 19.4939    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
RED_CAR 1 10300 0.17 0.6838 0.17 0.6838

REVOKED

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1690326.0044 164.1093
Scaled Deviance 1E4 4375.6107 0.4248
Pearson Chi-Square 1E4 3978954.9903 386.3063
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2187.8053  
Full Log Likelihood   -2187.8053  
AIC (smaller is better)   4379.6107  
AICC (smaller is better)   4379.6118  
BIC (smaller is better)   4394.0908  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 7.7949 0.0788 7.6404 7.9495 9773.73 <.0001
REVOKED No 1 -0.5627 0.0858 -0.7309 -0.3945 42.98 <.0001
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 19.6547 0.0000 19.6547 19.6547    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
REVOKED 1 10300 43.16 <.0001 43.16 <.0001

TIF

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1698055.6315 164.8598
Scaled Deviance 1E4 4443.2077 0.4314
Pearson Chi-Square 1E4 3936339.3019 382.1689
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2221.6038  
Full Log Likelihood   -2221.6038  
AIC (smaller is better)   4447.2077  
AICC (smaller is better)   4447.2088  
BIC (smaller is better)   4461.6879  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.5086 0.0497 7.4113 7.6060 22848.1 <.0001
TIF 1 -0.0374 0.0077 -0.0526 -0.0222 23.37 <.0001
Scale 0 19.5491 0.0000 19.5491 19.5491    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
TIF 1 10300 23.40 <.0001 23.40 <.0001

TRAVTIME

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1703109.5649 165.3504
Scaled Deviance 1E4 4467.1248 0.4337
Pearson Chi-Square 1E4 3926917.0585 381.2541
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -2233.5624  
Full Log Likelihood   -2233.5624  
AIC (smaller is better)   4471.1248  
AICC (smaller is better)   4471.1259  
BIC (smaller is better)   4485.6050  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.1051 0.0742 6.9597 7.2506 9166.84 <.0001
TRAVTIME 1 0.0063 0.0020 0.0024 0.0102 10.21 0.0014
Scale 0 19.5257 0.0000 19.5257 19.5257    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
TRAVTIME 1 10300 10.20 0.0014 10.20 0.0014

URBANICITY

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1613430.5208 156.6437
Scaled Deviance 1E4 3551.5756 0.3448
Pearson Chi-Square 1E4 4679144.2146 454.2858
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -1775.7878  
Full Log Likelihood   -1775.7878  
AIC (smaller is better)   3555.5756  
AICC (smaller is better)   3555.5768  
BIC (smaller is better)   3570.0558  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 5.9049 0.1070 5.6952 6.1146 3045.82 <.0001
URBANICITY Highly Urban/ Urban 1 1.5903 0.1129 1.3690 1.8116 198.39 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 21.3140 0.0000 21.3140 21.3140    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 10300 205.96 <.0001 205.96 <.0001

YOJ

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9754
Missing Values 548

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9752 1607920.2970 164.8811
Scaled Deviance 9752 4370.6569 0.4482
Pearson Chi-Square 9752 3587661.7689 367.8898
Scaled Pearson X2 9752 9752.0000 1.0000
Log Likelihood   -2185.3285  
Full Log Likelihood   -2185.3285  
AIC (smaller is better)   4374.6569  
AICC (smaller is better)   4374.6582  
BIC (smaller is better)   4389.0278  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept 1 7.5108 0.0822 7.3496 7.6720 8343.03 <.0001
YOJ 1 -0.0190 0.0074 -0.0335 -0.0045 6.63 0.0100
Scale 0 19.1805 0.0000 19.1805 19.1805    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
YOJ 1 9752 6.64 0.0100 6.64 0.0100

Aggregate (all potential explanatory variables)

The PRINT Procedure

Data Set WORK.AGGREGATE

Obs parm ProbChiSq
1 URBANICITY <.0001
2 MVR_PTS <.0001
3 OCCUPATION <.0001
4 CAR_USE <.0001
5 HOME_VAL <.0001
6 PARENT1 <.0001
7 MSTATUS <.0001
8 CAR_TYPE <.0001
9 CAR_AGE <.0001
10 HOMEKIDS <.0001
11 REVOKED <.0001
12 KIDSDRIV <.0001
13 EDUCATION <.0001
14 INCOME <.0001
15 TIF <.0001
16 BIRTH <.0001
17 AGE <.0001
18 TRAVTIME 0.0014
19 YOJ 0.0100
20 RED_CAR 0.6838
21 GENDER 0.7309
22 BLUEBOOK 0.8052

Elegibles (individual model threshold = 0.2)

The PRINT Procedure

Data Set WORK.ELEGIBLES

Obs source ProbChiSq
1 URBANICITY <.0001
2 MVR_PTS <.0001
3 OCCUPATION <.0001
4 CAR_USE <.0001
5 HOME_VAL <.0001
6 PARENT1 <.0001
7 MSTATUS <.0001
8 CAR_TYPE <.0001
9 CAR_AGE <.0001
10 HOMEKIDS <.0001
11 REVOKED <.0001
12 KIDSDRIV <.0001
13 EDUCATION <.0001
14 INCOME <.0001
15 TIF <.0001
16 BIRTH <.0001
17 AGE <.0001
18 TRAVTIME 0.0014
19 YOJ 0.0100

Step 1

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1613430.5208 156.6437
Scaled Deviance 1E4 3551.5756 0.3448
Pearson Chi-Square 1E4 4679144.2146 454.2858
Scaled Pearson X2 1E4 10300.0000 1.0000
Log Likelihood   -1775.7878  
Full Log Likelihood   -1775.7878  
AIC (smaller is better)   3555.5756  
AICC (smaller is better)   3555.5768  
BIC (smaller is better)   3570.0558  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 5.9049 0.1070 5.6952 6.1146 3045.82 <.0001
URBANICITY Highly Urban/ Urban 1 1.5903 0.1129 1.3690 1.8116 198.39 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 21.3140 0.0000 21.3140 21.3140    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 10300 205.96 <.0001 205.96 <.0001

Step 2

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 10302

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 1E4 1573274.4976 152.7599
Scaled Deviance 1E4 3427.0895 0.3328
Pearson Chi-Square 1E4 4727963.4884 459.0702
Scaled Pearson X2 1E4 10299.0000 1.0000
Log Likelihood   -1713.5448  
Full Log Likelihood   -1713.5448  
AIC (smaller is better)   3433.0895  
AICC (smaller is better)   3433.0918  
BIC (smaller is better)   3454.8098  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 5.7188 0.1102 5.5028 5.9348 2692.55 <.0001
URBANICITY Highly Urban/ Urban 1 1.4738 0.1151 1.2482 1.6994 163.93 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.1348 0.0145 0.1064 0.1631 86.85 <.0001
Scale   0 21.4259 0.0000 21.4259 21.4259    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 10299 168.95 <.0001 168.95 <.0001
MVR_PTS 1 10299 87.47 <.0001 87.47 <.0001

Step 3

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9637
Missing Values 665

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9627 1398915.6920 145.3117
Scaled Deviance 9627 2952.5822 0.3067
Pearson Chi-Square 9627 4561214.7200 473.7940
Scaled Pearson X2 9627 9627.0000 1.0000
Log Likelihood   -1476.2911  
Full Log Likelihood   -1476.2911  
AIC (smaller is better)   2972.5822  
AICC (smaller is better)   2972.6050  
BIC (smaller is better)   3044.3158  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 5.8919 0.1295 5.6380 6.1458 2068.47 <.0001
URBANICITY Highly Urban/ Urban 1 1.6675 0.1198 1.4326 1.9024 193.58 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.1165 0.0154 0.0863 0.1468 57.11 <.0001
OCCUPATION Clerical 1 -0.1170 0.1134 -0.3394 0.1053 1.06 0.3023
OCCUPATION Doctor 1 -1.4260 0.2610 -1.9377 -0.9144 29.84 <.0001
OCCUPATION Home Maker 1 -0.2883 0.1471 -0.5766 -0.0001 3.84 0.0499
OCCUPATION Lawyer 1 -0.7308 0.1386 -1.0024 -0.4592 27.81 <.0001
OCCUPATION Manager 1 -1.2293 0.1404 -1.5044 -0.9542 76.70 <.0001
OCCUPATION Professional 1 -0.3476 0.1178 -0.5786 -0.1167 8.70 0.0032
OCCUPATION Student 1 0.0771 0.1323 -0.1822 0.3363 0.34 0.5602
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 21.7668 0.0000 21.7668 21.7668    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 9627 200.02 <.0001 200.02 <.0001
MVR_PTS 1 9627 57.43 <.0001 57.43 <.0001
OCCUPATION 7 9627 17.75 <.0001 124.26 <.0001

Step 4

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9637
Missing Values 665

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9626 1388138.6554 144.2072
Scaled Deviance 9626 2979.3089 0.3095
Pearson Chi-Square 9626 4485007.4301 465.9264
Scaled Pearson X2 9626 9626.0000 1.0000
Log Likelihood   -1489.6545  
Full Log Likelihood   -1489.6545  
AIC (smaller is better)   3001.3089  
AICC (smaller is better)   3001.3364  
BIC (smaller is better)   3080.2159  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 5.5574 0.1463 5.2707 5.8441 1443.12 <.0001
URBANICITY Highly Urban/ Urban 1 1.6691 0.1190 1.4359 1.9023 196.75 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.1119 0.0154 0.0818 0.1420 53.00 <.0001
OCCUPATION Clerical 1 0.1328 0.1241 -0.1105 0.3761 1.14 0.2847
OCCUPATION Doctor 1 -1.0845 0.2684 -1.6105 -0.5585 16.33 <.0001
OCCUPATION Home Maker 1 0.0108 0.1588 -0.3005 0.3221 0.00 0.9457
OCCUPATION Lawyer 1 -0.3892 0.1547 -0.6925 -0.0859 6.33 0.0119
OCCUPATION Manager 1 -1.0204 0.1462 -1.3069 -0.7339 48.72 <.0001
OCCUPATION Professional 1 -0.1403 0.1248 -0.3848 0.1043 1.26 0.2610
OCCUPATION Student 1 0.1660 0.1330 -0.0947 0.4266 1.56 0.2120
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4392 0.0914 0.2601 0.6183 23.10 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 21.5853 0.0000 21.5853 21.5853    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 9626 203.31 <.0001 203.31 <.0001
MVR_PTS 1 9626 53.26 <.0001 53.26 <.0001
OCCUPATION 7 9626 12.76 <.0001 89.29 <.0001
CAR_USE 1 9626 23.13 <.0001 23.13 <.0001

Step 5

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9111
Missing Values 1191

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9099 1280636.5838 140.7448
Scaled Deviance 9099 2642.2956 0.2904
Pearson Chi-Square 9099 4409995.6648 484.6682
Scaled Pearson X2 9099 9099.0000 1.0000
Log Likelihood   -1321.1478  
Full Log Likelihood   -1321.1478  
AIC (smaller is better)   2666.2956  
AICC (smaller is better)   2666.3299  
BIC (smaller is better)   2751.7025  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 5.9043 0.1616 5.5875 6.2211 1334.68 <.0001
URBANICITY Highly Urban/ Urban 1 1.6781 0.1253 1.4325 1.9237 179.36 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0972 0.0163 0.0652 0.1292 35.49 <.0001
OCCUPATION Clerical 1 0.0213 0.1315 -0.2365 0.2790 0.03 0.8715
OCCUPATION Doctor 1 -0.8856 0.2859 -1.4460 -0.3252 9.59 0.0020
OCCUPATION Home Maker 1 -0.1249 0.1678 -0.4538 0.2039 0.55 0.4566
OCCUPATION Lawyer 1 -0.3120 0.1641 -0.6335 0.0096 3.62 0.0572
OCCUPATION Manager 1 -0.9565 0.1563 -1.2628 -0.6502 37.47 <.0001
OCCUPATION Professional 1 -0.0310 0.1317 -0.2892 0.2272 0.06 0.8141
OCCUPATION Student 1 -0.1829 0.1482 -0.4733 0.1076 1.52 0.2172
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4709 0.0968 0.2812 0.6605 23.68 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 43.51 <.0001
Scale   0 22.0152 0.0000 22.0152 22.0152    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 9099 185.27 <.0001 185.27 <.0001
MVR_PTS 1 9099 35.62 <.0001 35.62 <.0001
OCCUPATION 7 9099 7.77 <.0001 54.39 <.0001
CAR_USE 1 9099 23.71 <.0001 23.71 <.0001
HOME_VAL 1 9099 43.58 <.0001 43.58 <.0001

Step 6

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9111
Missing Values 1191

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9098 1271437.5999 139.7491
Scaled Deviance 9098 2537.8184 0.2789
Pearson Chi-Square 9098 4558064.2324 500.9963
Scaled Pearson X2 9098 9098.0000 1.0000
Log Likelihood   -1268.9092  
Full Log Likelihood   -1268.9092  
AIC (smaller is better)   2563.8184  
AICC (smaller is better)   2563.8584  
BIC (smaller is better)   2656.3425  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.2226 0.1805 5.8689 6.5764 1188.41 <.0001
URBANICITY Highly Urban/ Urban 1 1.6776 0.1274 1.4278 1.9274 173.26 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0938 0.0166 0.0611 0.1264 31.73 <.0001
OCCUPATION Clerical 1 0.0174 0.1339 -0.2449 0.2798 0.02 0.8963
OCCUPATION Doctor 1 -0.9029 0.2929 -1.4769 -0.3289 9.50 0.0020
OCCUPATION Home Maker 1 -0.0906 0.1711 -0.4259 0.2448 0.28 0.5966
OCCUPATION Lawyer 1 -0.3145 0.1674 -0.6426 0.0135 3.53 0.0602
OCCUPATION Manager 1 -0.9720 0.1595 -1.2847 -0.6594 37.13 <.0001
OCCUPATION Professional 1 -0.0391 0.1342 -0.3021 0.2240 0.08 0.7708
OCCUPATION Student 1 -0.1332 0.1509 -0.4290 0.1625 0.78 0.3773
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4720 0.0986 0.2789 0.6652 22.93 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 25.44 <.0001
PARENT1 No 1 -0.4569 0.1068 -0.6661 -0.2476 18.31 <.0001
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 22.3829 0.0000 22.3829 22.3829    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 9098 178.96 <.0001 178.96 <.0001
MVR_PTS 1 9098 31.84 <.0001 31.84 <.0001
OCCUPATION 7 9098 7.61 <.0001 53.24 <.0001
CAR_USE 1 9098 22.97 <.0001 22.97 <.0001
HOME_VAL 1 9098 25.46 <.0001 25.46 <.0001
PARENT1 1 9098 18.36 <.0001 18.36 <.0001

Step 7

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9111
Missing Values 1191

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9097 1269214.1200 139.5201
Scaled Deviance 9097 2575.3559 0.2831
Pearson Chi-Square 9097 4483279.7239 492.8306
Scaled Pearson X2 9097 9097.0000 1.0000
Log Likelihood   -1287.6779  
Full Log Likelihood   -1287.6779  
AIC (smaller is better)   2603.3559  
AICC (smaller is better)   2603.4021  
BIC (smaller is better)   2702.9972  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.1796 0.1805 5.8259 6.5333 1172.63 <.0001
URBANICITY Highly Urban/ Urban 1 1.6891 0.1268 1.4406 1.9376 177.46 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0942 0.0165 0.0618 0.1265 32.51 <.0001
OCCUPATION Clerical 1 0.0426 0.1333 -0.2188 0.3039 0.10 0.7495
OCCUPATION Doctor 1 -0.9802 0.2932 -1.5548 -0.4055 11.18 0.0008
OCCUPATION Home Maker 1 -0.0637 0.1703 -0.3974 0.2700 0.14 0.7084
OCCUPATION Lawyer 1 -0.3462 0.1667 -0.6730 -0.0195 4.31 0.0378
OCCUPATION Manager 1 -0.9954 0.1587 -1.3065 -0.6844 39.35 <.0001
OCCUPATION Professional 1 -0.0518 0.1333 -0.3130 0.2094 0.15 0.6976
OCCUPATION Student 1 -0.0526 0.1544 -0.3551 0.2500 0.12 0.7334
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4581 0.0980 0.2661 0.6502 21.87 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 11.70 0.0006
PARENT1 No 1 -0.3444 0.1184 -0.5765 -0.1123 8.46 0.0036
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2221 0.1046 -0.4271 -0.0171 4.51 0.0337
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 22.1998 0.0000 22.1998 22.1998    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 9097 183.54 <.0001 183.54 <.0001
MVR_PTS 1 9097 32.62 <.0001 32.62 <.0001
OCCUPATION 7 9097 8.21 <.0001 57.48 <.0001
CAR_USE 1 9097 21.90 <.0001 21.90 <.0001
HOME_VAL 1 9097 11.70 0.0006 11.70 0.0006
PARENT1 1 9097 8.47 0.0036 8.47 0.0036
MSTATUS 1 9097 4.51 0.0337 4.51 0.0337

Step 8

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 9111
Missing Values 1191

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 9092 1250649.0043 137.5549
Scaled Deviance 9092 2755.7067 0.3031
Pearson Chi-Square 9092 4126310.1647 453.8397
Scaled Pearson X2 9092 9092.0000 1.0000
Log Likelihood   -1377.8534  
Full Log Likelihood   -1377.8534  
AIC (smaller is better)   2793.7067  
AICC (smaller is better)   2793.7903  
BIC (smaller is better)   2928.9343  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.3385 0.1820 5.9817 6.6952 1212.83 <.0001
URBANICITY Highly Urban/ Urban 1 1.7214 0.1227 1.4809 1.9620 196.68 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0881 0.0159 0.0569 0.1194 30.60 <.0001
OCCUPATION Clerical 1 0.0219 0.1314 -0.2357 0.2795 0.03 0.8676
OCCUPATION Doctor 1 -1.0450 0.2865 -1.6064 -0.4835 13.31 0.0003
OCCUPATION Home Maker 1 -0.1978 0.1664 -0.5240 0.1284 1.41 0.2345
OCCUPATION Lawyer 1 -0.3595 0.1626 -0.6782 -0.0408 4.89 0.0271
OCCUPATION Manager 1 -1.0248 0.1570 -1.3325 -0.7172 42.62 <.0001
OCCUPATION Professional 1 -0.0960 0.1339 -0.3584 0.1663 0.51 0.4732
OCCUPATION Student 1 -0.0452 0.1483 -0.3360 0.2455 0.09 0.7604
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4213 0.1113 0.2033 0.6394 14.34 0.0002
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 13.24 0.0003
PARENT1 No 1 -0.3567 0.1144 -0.5809 -0.1326 9.73 0.0018
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2109 0.1013 -0.4093 -0.0124 4.34 0.0373
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5472 0.1066 -0.7561 -0.3383 26.36 <.0001
CAR_TYPE Panel Truck 1 -0.0185 0.1829 -0.3769 0.3399 0.01 0.9195
CAR_TYPE Pickup 1 -0.1834 0.1207 -0.4199 0.0531 2.31 0.1285
CAR_TYPE Sports Car 1 0.1396 0.1222 -0.1000 0.3792 1.30 0.2534
CAR_TYPE Van 1 0.1037 0.1505 -0.1913 0.3986 0.47 0.4910
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 21.3035 0.0000 21.3035 21.3035    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 9092 204.09 <.0001 204.09 <.0001
MVR_PTS 1 9092 30.68 <.0001 30.68 <.0001
OCCUPATION 7 9092 8.90 <.0001 62.30 <.0001
CAR_USE 1 9092 14.36 0.0002 14.36 0.0002
HOME_VAL 1 9092 13.25 0.0003 13.25 0.0003
PARENT1 1 9092 9.74 0.0018 9.74 0.0018
MSTATUS 1 9092 4.34 0.0373 4.34 0.0373
CAR_TYPE 5 9092 8.18 <.0001 40.91 <.0001

Step 9

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8540 1171380.9181 137.1640
Scaled Deviance 8540 2723.1155 0.3189
Pearson Chi-Square 8540 3673583.7755 430.1620
Scaled Pearson X2 8540 8540.0000 1.0000
Log Likelihood   -1361.5578  
Full Log Likelihood   -1361.5578  
AIC (smaller is better)   2763.1155  
AICC (smaller is better)   2763.2139  
BIC (smaller is better)   2904.2126  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.4537 0.1865 6.0882 6.8191 1198.00 <.0001
URBANICITY Highly Urban/ Urban 1 1.7273 0.1232 1.4857 1.9688 196.41 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0854 0.0160 0.0541 0.1168 28.53 <.0001
OCCUPATION Clerical 1 0.0546 0.1313 -0.2028 0.3121 0.17 0.6775
OCCUPATION Doctor 1 -0.8272 0.2997 -1.4146 -0.2398 7.62 0.0058
OCCUPATION Home Maker 1 -0.0914 0.1698 -0.4242 0.2414 0.29 0.5904
OCCUPATION Lawyer 1 -0.1452 0.1824 -0.5027 0.2123 0.63 0.4260
OCCUPATION Manager 1 -0.9272 0.1656 -1.2518 -0.6026 31.34 <.0001
OCCUPATION Professional 1 0.0151 0.1368 -0.2530 0.2832 0.01 0.9118
OCCUPATION Student 1 -0.0540 0.1502 -0.3483 0.2404 0.13 0.7194
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4552 0.1121 0.2356 0.6748 16.50 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 13.05 0.0003
PARENT1 No 1 -0.3611 0.1152 -0.5870 -0.1353 9.82 0.0017
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2016 0.1026 -0.4027 -0.0005 3.86 0.0494
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5567 0.1072 -0.7668 -0.3466 26.98 <.0001
CAR_TYPE Panel Truck 1 0.0016 0.1833 -0.3576 0.3608 0.00 0.9931
CAR_TYPE Pickup 1 -0.2320 0.1217 -0.4705 0.0064 3.64 0.0565
CAR_TYPE Sports Car 1 0.1175 0.1230 -0.1236 0.3585 0.91 0.3394
CAR_TYPE Van 1 0.0967 0.1513 -0.1999 0.3933 0.41 0.5230
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0254 0.0084 -0.0419 -0.0089 9.14 0.0025
Scale   0 20.7403 0.0000 20.7403 20.7403    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8540 203.81 <.0001 203.81 <.0001
MVR_PTS 1 8540 28.61 <.0001 28.61 <.0001
OCCUPATION 7 8540 6.94 <.0001 48.59 <.0001
CAR_USE 1 8540 16.52 <.0001 16.52 <.0001
HOME_VAL 1 8540 13.06 0.0003 13.06 0.0003
PARENT1 1 8540 9.83 0.0017 9.83 0.0017
MSTATUS 1 8540 3.86 0.0494 3.86 0.0493
CAR_TYPE 5 8540 8.28 <.0001 41.39 <.0001
CAR_AGE 1 8540 9.15 0.0025 9.15 0.0025

Step 10

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8539 1169860.4332 137.0020
Scaled Deviance 8539 2700.5535 0.3163
Pearson Chi-Square 8539 3699033.6913 433.1928
Scaled Pearson X2 8539 8539.0000 1.0000
Log Likelihood   -1350.2767  
Full Log Likelihood   -1350.2767  
AIC (smaller is better)   2742.5535  
AICC (smaller is better)   2742.6617  
BIC (smaller is better)   2890.7054  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.2966 0.2050 5.8949 6.6983 943.71 <.0001
URBANICITY Highly Urban/ Urban 1 1.7266 0.1236 1.4843 1.9689 195.05 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0846 0.0161 0.0531 0.1160 27.76 <.0001
OCCUPATION Clerical 1 0.0454 0.1318 -0.2130 0.3038 0.12 0.7308
OCCUPATION Doctor 1 -0.8156 0.3011 -1.4058 -0.2254 7.34 0.0068
OCCUPATION Home Maker 1 -0.0936 0.1705 -0.4278 0.2406 0.30 0.5830
OCCUPATION Lawyer 1 -0.1325 0.1833 -0.4918 0.2267 0.52 0.4697
OCCUPATION Manager 1 -0.9194 0.1664 -1.2456 -0.5933 30.52 <.0001
OCCUPATION Professional 1 0.0255 0.1374 -0.2437 0.2948 0.03 0.8526
OCCUPATION Student 1 -0.0709 0.1509 -0.3667 0.2249 0.22 0.6384
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4570 0.1124 0.2367 0.6773 16.53 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.33 0.0004
PARENT1 No 1 -0.2159 0.1392 -0.4887 0.0570 2.40 0.1210
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2725 0.1097 -0.4876 -0.0575 6.17 0.0130
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5493 0.1077 -0.7604 -0.3383 26.02 <.0001
CAR_TYPE Panel Truck 1 0.0077 0.1842 -0.3533 0.3687 0.00 0.9665
CAR_TYPE Pickup 1 -0.2194 0.1223 -0.4591 0.0203 3.22 0.0728
CAR_TYPE Sports Car 1 0.1250 0.1235 -0.1170 0.3669 1.02 0.3114
CAR_TYPE Van 1 0.1100 0.1520 -0.1879 0.4080 0.52 0.4691
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0251 0.0085 -0.0417 -0.0086 8.85 0.0029
HOMEKIDS   1 0.0761 0.0406 -0.0035 0.1556 3.51 0.0609
Scale   0 20.8133 0.0000 20.8133 20.8133    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8539 202.38 <.0001 202.38 <.0001
MVR_PTS 1 8539 27.84 <.0001 27.84 <.0001
OCCUPATION 7 8539 6.80 <.0001 47.58 <.0001
CAR_USE 1 8539 16.55 <.0001 16.55 <.0001
HOME_VAL 1 8539 12.33 0.0004 12.33 0.0004
PARENT1 1 8539 2.41 0.1209 2.41 0.1209
MSTATUS 1 8539 6.17 0.0130 6.17 0.0130
CAR_TYPE 5 8539 8.14 <.0001 40.69 <.0001
CAR_AGE 1 8539 8.86 0.0029 8.86 0.0029
HOMEKIDS 1 8539 3.51 0.0610 3.51 0.0610

Step 11

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8539 1167909.7000 136.7736
Scaled Deviance 8539 2675.7105 0.3134
Pearson Chi-Square 8539 3727152.4675 436.4858
Scaled Pearson X2 8539 8539.0000 1.0000
Log Likelihood   -1337.8552  
Full Log Likelihood   -1337.8552  
AIC (smaller is better)   2717.7105  
AICC (smaller is better)   2717.8187  
BIC (smaller is better)   2865.8624  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.7029 0.2077 6.2957 7.1100 1041.07 <.0001
URBANICITY Highly Urban/ Urban 1 1.7095 0.1246 1.4652 1.9538 188.11 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0851 0.0161 0.0535 0.1167 27.83 <.0001
OCCUPATION Clerical 1 0.0483 0.1325 -0.2114 0.3080 0.13 0.7154
OCCUPATION Doctor 1 -0.8229 0.3024 -1.4156 -0.2303 7.41 0.0065
OCCUPATION Home Maker 1 -0.0854 0.1712 -0.4210 0.2501 0.25 0.6178
OCCUPATION Lawyer 1 -0.1540 0.1839 -0.5145 0.2065 0.70 0.4025
OCCUPATION Manager 1 -0.9159 0.1669 -1.2431 -0.5887 30.11 <.0001
OCCUPATION Professional 1 0.0136 0.1378 -0.2565 0.2836 0.01 0.9215
OCCUPATION Student 1 -0.0603 0.1515 -0.3572 0.2366 0.16 0.6907
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4478 0.1130 0.2263 0.6693 15.70 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.37 0.0004
PARENT1 No 1 -0.3493 0.1162 -0.5770 -0.1216 9.04 0.0026
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2048 0.1034 -0.4075 -0.0022 3.92 0.0476
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5433 0.1081 -0.7552 -0.3314 25.26 <.0001
CAR_TYPE Panel Truck 1 0.0114 0.1850 -0.3512 0.3740 0.00 0.9507
CAR_TYPE Pickup 1 -0.2316 0.1227 -0.4721 0.0089 3.56 0.0591
CAR_TYPE Sports Car 1 0.1158 0.1241 -0.1273 0.3590 0.87 0.3505
CAR_TYPE Van 1 0.1128 0.1525 -0.1860 0.4116 0.55 0.4595
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0249 0.0085 -0.0416 -0.0083 8.62 0.0033
REVOKED No 1 -0.2959 0.1050 -0.5017 -0.0902 7.95 0.0048
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 20.8922 0.0000 20.8922 20.8922    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8539 194.81 <.0001 194.81 <.0001
MVR_PTS 1 8539 27.91 <.0001 27.91 <.0001
OCCUPATION 7 8539 6.63 <.0001 46.43 <.0001
CAR_USE 1 8539 15.72 <.0001 15.72 <.0001
HOME_VAL 1 8539 12.38 0.0004 12.38 0.0004
PARENT1 1 8539 9.05 0.0026 9.05 0.0026
MSTATUS 1 8539 3.93 0.0476 3.93 0.0475
CAR_TYPE 5 8539 7.92 <.0001 39.62 <.0001
CAR_AGE 1 8539 8.64 0.0033 8.64 0.0033
REVOKED 1 8539 7.95 0.0048 7.95 0.0048

Step 12

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8538 1161980.9131 136.0952
Scaled Deviance 8538 2657.3763 0.3112
Pearson Chi-Square 8538 3733379.1049 437.2662
Scaled Pearson X2 8538 8538.0000 1.0000
Log Likelihood   -1328.6881  
Full Log Likelihood   -1328.6881  
AIC (smaller is better)   2701.3763  
AICC (smaller is better)   2701.4948  
BIC (smaller is better)   2856.5831  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.5659 0.2112 6.1520 6.9799 966.37 <.0001
URBANICITY Highly Urban/ Urban 1 1.7115 0.1244 1.4676 1.9554 189.15 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0827 0.0162 0.0510 0.1144 26.21 <.0001
OCCUPATION Clerical 1 0.0681 0.1326 -0.1917 0.3280 0.26 0.6074
OCCUPATION Doctor 1 -0.8034 0.3040 -1.3993 -0.2076 6.98 0.0082
OCCUPATION Home Maker 1 -0.0638 0.1714 -0.3997 0.2721 0.14 0.7097
OCCUPATION Lawyer 1 -0.1362 0.1845 -0.4978 0.2254 0.55 0.4602
OCCUPATION Manager 1 -0.9326 0.1681 -1.2620 -0.6032 30.79 <.0001
OCCUPATION Professional 1 0.0195 0.1382 -0.2513 0.2903 0.02 0.8879
OCCUPATION Student 1 -0.0432 0.1517 -0.3405 0.2541 0.08 0.7757
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4716 0.1133 0.2496 0.6937 17.32 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.63 0.0004
PARENT1 No 1 -0.2336 0.1205 -0.4699 0.0026 3.76 0.0525
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2656 0.1049 -0.4711 -0.0601 6.42 0.0113
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5518 0.1085 -0.7644 -0.3391 25.86 <.0001
CAR_TYPE Panel Truck 1 0.0041 0.1854 -0.3593 0.3675 0.00 0.9825
CAR_TYPE Pickup 1 -0.2322 0.1229 -0.4730 0.0086 3.57 0.0588
CAR_TYPE Sports Car 1 0.1285 0.1243 -0.1151 0.3721 1.07 0.3012
CAR_TYPE Van 1 0.1253 0.1527 -0.1739 0.4246 0.67 0.4117
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0253 0.0085 -0.0420 -0.0086 8.81 0.0030
REVOKED No 1 -0.2855 0.1052 -0.4917 -0.0793 7.37 0.0066
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2562 0.0696 0.1198 0.3925 13.56 0.0002
Scale   0 20.9109 0.0000 20.9109 20.9109    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8538 195.78 <.0001 195.78 <.0001
MVR_PTS 1 8538 26.28 <.0001 26.28 <.0001
OCCUPATION 7 8538 6.84 <.0001 47.90 <.0001
CAR_USE 1 8538 17.35 <.0001 17.35 <.0001
HOME_VAL 1 8538 12.64 0.0004 12.64 0.0004
PARENT1 1 8538 3.76 0.0525 3.76 0.0525
MSTATUS 1 8538 6.42 0.0113 6.42 0.0113
CAR_TYPE 5 8538 8.25 <.0001 41.23 <.0001
CAR_AGE 1 8538 8.83 0.0030 8.83 0.0030
REVOKED 1 8538 7.37 0.0066 7.37 0.0066
KIDSDRIV 1 8538 13.56 0.0002 13.56 0.0002

Step 13

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes
EDUCATION 5 <High School Bachelors Masters PhD z_High School

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8534 1160176.7087 135.9476
Scaled Deviance 8534 2630.2404 0.3082
Pearson Chi-Square 8534 3764274.9380 441.0915
Scaled Pearson X2 8534 8534.0000 1.0000
Log Likelihood   -1315.1202  
Full Log Likelihood   -1315.1202  
AIC (smaller is better)   2682.2404  
AICC (smaller is better)   2682.4049  
BIC (smaller is better)   2865.6666  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.5511 0.2217 6.1166 6.9856 873.31 <.0001
URBANICITY Highly Urban/ Urban 1 1.7073 0.1250 1.4623 1.9523 186.58 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0828 0.0162 0.0510 0.1147 26.00 <.0001
OCCUPATION Clerical 1 0.0671 0.1336 -0.1947 0.3290 0.25 0.6153
OCCUPATION Doctor 1 -1.1161 0.3844 -1.8696 -0.3626 8.43 0.0037
OCCUPATION Home Maker 1 -0.0701 0.1797 -0.4222 0.2821 0.15 0.6965
OCCUPATION Lawyer 1 -0.1409 0.2475 -0.6260 0.3442 0.32 0.5692
OCCUPATION Manager 1 -0.9313 0.1891 -1.3018 -0.5607 24.26 <.0001
OCCUPATION Professional 1 0.0838 0.1517 -0.2135 0.3812 0.31 0.5806
OCCUPATION Student 1 -0.0534 0.1528 -0.3529 0.2462 0.12 0.7270
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.5065 0.1196 0.2721 0.7409 17.93 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.47 0.0004
PARENT1 No 1 -0.2390 0.1213 -0.4767 -0.0012 3.88 0.0489
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2652 0.1062 -0.4733 -0.0571 6.24 0.0125
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5530 0.1092 -0.7670 -0.3391 25.67 <.0001
CAR_TYPE Panel Truck 1 -0.0403 0.1892 -0.4110 0.3305 0.05 0.8315
CAR_TYPE Pickup 1 -0.2497 0.1244 -0.4935 -0.0058 4.03 0.0448
CAR_TYPE Sports Car 1 0.1226 0.1250 -0.1225 0.3676 0.96 0.3268
CAR_TYPE Van 1 0.1223 0.1540 -0.1794 0.4241 0.63 0.4269
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0240 0.0101 -0.0437 -0.0043 5.68 0.0171
REVOKED No 1 -0.2857 0.1057 -0.4930 -0.0785 7.30 0.0069
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2550 0.0699 0.1179 0.3920 13.29 0.0003
EDUCATION <High School 1 0.0873 0.1192 -0.1463 0.3210 0.54 0.4639
EDUCATION Bachelors 1 -0.0769 0.1154 -0.3030 0.1492 0.44 0.5048
EDUCATION Masters 1 -0.0261 0.2172 -0.4518 0.3996 0.01 0.9043
EDUCATION PhD 1 0.3263 0.2708 -0.2043 0.8570 1.45 0.2281
EDUCATION z_High School 0 0.0000 0.0000 0.0000 0.0000 . .
Scale   0 21.0022 0.0000 21.0022 21.0022    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8534 193.19 <.0001 193.19 <.0001
MVR_PTS 1 8534 26.07 <.0001 26.07 <.0001
OCCUPATION 7 8534 6.61 <.0001 46.25 <.0001
CAR_USE 1 8534 17.96 <.0001 17.96 <.0001
HOME_VAL 1 8534 12.48 0.0004 12.48 0.0004
PARENT1 1 8534 3.88 0.0489 3.88 0.0488
MSTATUS 1 8534 6.24 0.0125 6.24 0.0125
CAR_TYPE 5 8534 8.12 <.0001 40.58 <.0001
CAR_AGE 1 8534 5.69 0.0171 5.69 0.0171
REVOKED 1 8534 7.31 0.0069 7.31 0.0069
KIDSDRIV 1 8534 13.28 0.0003 13.28 0.0003
EDUCATION 4 8534 1.02 0.3940 4.09 0.3939

Step 14

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8096
Missing Values 2206

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8073 1098510.7000 136.0722
Scaled Deviance 8073 2544.3168 0.3152
Pearson Chi-Square 8073 3485523.8673 431.7508
Scaled Pearson X2 8073 8073.0000 1.0000
Log Likelihood   -1272.1584  
Full Log Likelihood   -1272.1584  
AIC (smaller is better)   2590.3168  
AICC (smaller is better)   2590.4536  
BIC (smaller is better)   2751.2967  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.7365 0.2225 6.3004 7.1727 916.41 <.0001
URBANICITY Highly Urban/ Urban 1 1.6651 0.1268 1.4166 1.9136 172.42 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0818 0.0163 0.0497 0.1138 25.03 <.0001
OCCUPATION Clerical 1 -0.0024 0.1378 -0.2725 0.2677 0.00 0.9859
OCCUPATION Doctor 1 -0.6459 0.3174 -1.2679 -0.0238 4.14 0.0418
OCCUPATION Home Maker 1 -0.1417 0.1825 -0.4993 0.2159 0.60 0.4374
OCCUPATION Lawyer 1 -0.0730 0.1907 -0.4468 0.3008 0.15 0.7020
OCCUPATION Manager 1 -0.8442 0.1739 -1.1850 -0.5034 23.58 <.0001
OCCUPATION Professional 1 0.0649 0.1425 -0.2144 0.3442 0.21 0.6488
OCCUPATION Student 1 -0.1429 0.1623 -0.4610 0.1751 0.78 0.3784
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4766 0.1160 0.2491 0.7040 16.87 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 6.16 0.0130
PARENT1 No 1 -0.2237 0.1221 -0.4630 0.0155 3.36 0.0669
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.3308 0.1107 -0.5477 -0.1139 8.94 0.0028
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.6158 0.1112 -0.8337 -0.3978 30.65 <.0001
CAR_TYPE Panel Truck 1 0.0168 0.1880 -0.3517 0.3852 0.01 0.9289
CAR_TYPE Pickup 1 -0.2371 0.1249 -0.4820 0.0077 3.60 0.0577
CAR_TYPE Sports Car 1 0.1139 0.1266 -0.1342 0.3621 0.81 0.3683
CAR_TYPE Van 1 0.0991 0.1572 -0.2091 0.4073 0.40 0.5285
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0240 0.0088 -0.0413 -0.0068 7.46 0.0063
REVOKED No 1 -0.2940 0.1070 -0.5037 -0.0844 7.56 0.0060
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2652 0.0709 0.1263 0.4042 13.99 0.0002
INCOME   1 -0.0000 0.0000 -0.0000 0.0000 2.12 0.1457
Scale   0 20.7786 0.0000 20.7786 20.7786    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8073 178.08 <.0001 178.08 <.0001
MVR_PTS 1 8073 25.10 <.0001 25.10 <.0001
OCCUPATION 7 8073 5.47 <.0001 38.28 <.0001
CAR_USE 1 8073 16.89 <.0001 16.89 <.0001
HOME_VAL 1 8073 6.16 0.0131 6.16 0.0131
PARENT1 1 8073 3.36 0.0668 3.36 0.0668
MSTATUS 1 8073 8.94 0.0028 8.94 0.0028
CAR_TYPE 5 8073 9.14 <.0001 45.69 <.0001
CAR_AGE 1 8073 7.48 0.0063 7.48 0.0063
REVOKED 1 8073 7.56 0.0060 7.56 0.0060
KIDSDRIV 1 8073 13.98 0.0002 13.98 0.0002
INCOME 1 8073 2.12 0.1454 2.12 0.1454

Step 15

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8537 1154590.3332 135.2454
Scaled Deviance 8537 2503.3588 0.2932
Pearson Chi-Square 8537 3937405.0629 461.2165
Scaled Pearson X2 8537 8537.0000 1.0000
Log Likelihood   -1251.6794  
Full Log Likelihood   -1251.6794  
AIC (smaller is better)   2549.3588  
AICC (smaller is better)   2549.4882  
BIC (smaller is better)   2711.6205  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.7516 0.2219 6.3166 7.1865 925.60 <.0001
URBANICITY Highly Urban/ Urban 1 1.7166 0.1280 1.4658 1.9674 179.93 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0788 0.0167 0.0462 0.1115 22.40 <.0001
OCCUPATION Clerical 1 0.0842 0.1363 -0.1830 0.3514 0.38 0.5367
OCCUPATION Doctor 1 -0.8269 0.3131 -1.4405 -0.2132 6.97 0.0083
OCCUPATION Home Maker 1 -0.0699 0.1763 -0.4153 0.2756 0.16 0.6917
OCCUPATION Lawyer 1 -0.1385 0.1899 -0.5108 0.2338 0.53 0.4658
OCCUPATION Manager 1 -0.9409 0.1732 -1.2804 -0.6015 29.52 <.0001
OCCUPATION Professional 1 0.0256 0.1422 -0.2531 0.3043 0.03 0.8572
OCCUPATION Student 1 -0.0386 0.1558 -0.3440 0.2667 0.06 0.8043
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4885 0.1165 0.2601 0.7168 17.57 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.13 0.0005
PARENT1 No 1 -0.2313 0.1239 -0.4742 0.0116 3.48 0.0620
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2699 0.1079 -0.4814 -0.0584 6.26 0.0124
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5568 0.1117 -0.7757 -0.3379 24.85 <.0001
CAR_TYPE Panel Truck 1 -0.0046 0.1907 -0.3783 0.3691 0.00 0.9807
CAR_TYPE Pickup 1 -0.2418 0.1265 -0.4898 0.0062 3.65 0.0560
CAR_TYPE Sports Car 1 0.1295 0.1278 -0.1209 0.3800 1.03 0.3107
CAR_TYPE Van 1 0.1241 0.1571 -0.1839 0.4321 0.62 0.4296
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0246 0.0088 -0.0418 -0.0074 7.85 0.0051
REVOKED No 1 -0.2757 0.1081 -0.4876 -0.0638 6.50 0.0108
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2544 0.0714 0.1145 0.3943 12.70 0.0004
TIF   1 -0.0397 0.0099 -0.0592 -0.0203 15.98 <.0001
Scale   0 21.4760 0.0000 21.4760 21.4760    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8537 186.36 <.0001 186.36 <.0001
MVR_PTS 1 8537 22.46 <.0001 22.46 <.0001
OCCUPATION 7 8537 6.68 <.0001 46.74 <.0001
CAR_USE 1 8537 17.60 <.0001 17.60 <.0001
HOME_VAL 1 8537 12.14 0.0005 12.14 0.0005
PARENT1 1 8537 3.49 0.0619 3.49 0.0619
MSTATUS 1 8537 6.26 0.0124 6.26 0.0123
CAR_TYPE 5 8537 7.94 <.0001 39.69 <.0001
CAR_AGE 1 8537 7.87 0.0050 7.87 0.0050
REVOKED 1 8537 6.51 0.0108 6.51 0.0107
KIDSDRIV 1 8537 12.70 0.0004 12.70 0.0004
TIF 1 8537 16.02 <.0001 16.02 <.0001

Step 16

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8536 1154571.6569 135.2591
Scaled Deviance 8536 2507.7967 0.2938
Pearson Chi-Square 8536 3929913.3252 460.3928
Scaled Pearson X2 8536 8536.0000 1.0000
Log Likelihood   -1253.8983  
Full Log Likelihood   -1253.8983  
AIC (smaller is better)   2555.7967  
AICC (smaller is better)   2555.9373  
BIC (smaller is better)   2725.1132  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.7528 0.2218 6.3181 7.1876 926.80 <.0001
URBANICITY Highly Urban/ Urban 1 1.7184 0.1282 1.4672 1.9697 179.69 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0789 0.0166 0.0463 0.1115 22.47 <.0001
OCCUPATION Clerical 1 0.0862 0.1365 -0.1814 0.3537 0.40 0.5280
OCCUPATION Doctor 1 -0.8328 0.3143 -1.4487 -0.2169 7.02 0.0080
OCCUPATION Home Maker 1 -0.0708 0.1762 -0.4161 0.2744 0.16 0.6876
OCCUPATION Lawyer 1 -0.1433 0.1913 -0.5182 0.2316 0.56 0.4537
OCCUPATION Manager 1 -0.9426 0.1732 -1.2821 -0.6031 29.62 <.0001
OCCUPATION Professional 1 0.0239 0.1423 -0.2550 0.3029 0.03 0.8666
OCCUPATION Student 1 -0.0381 0.1557 -0.3432 0.2670 0.06 0.8066
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4882 0.1164 0.2600 0.7164 17.59 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.16 0.0005
PARENT1 No 1 -0.2390 0.1296 -0.4931 0.0150 3.40 0.0652
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2678 0.1083 -0.4801 -0.0555 6.11 0.0134
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5562 0.1116 -0.7750 -0.3373 24.82 <.0001
CAR_TYPE Panel Truck 1 -0.0045 0.1905 -0.3778 0.3689 0.00 0.9812
CAR_TYPE Pickup 1 -0.2408 0.1265 -0.4887 0.0072 3.62 0.0570
CAR_TYPE Sports Car 1 0.1293 0.1277 -0.1209 0.3795 1.03 0.3111
CAR_TYPE Van 1 0.1246 0.1570 -0.1832 0.4323 0.63 0.4276
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0246 0.0088 -0.0418 -0.0075 7.90 0.0050
REVOKED No 1 -0.2758 0.1080 -0.4876 -0.0641 6.52 0.0107
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2535 0.0714 0.1135 0.3935 12.60 0.0004
TIF   1 -0.0397 0.0099 -0.0591 -0.0202 15.97 <.0001
BIRTH   1 -0.0000 0.0000 -0.0000 0.0000 0.04 0.8404
Scale   0 21.4568 0.0000 21.4568 21.4568    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8536 186.31 <.0001 186.31 <.0001
MVR_PTS 1 8536 22.53 <.0001 22.53 <.0001
OCCUPATION 7 8536 6.68 <.0001 46.79 <.0001
CAR_USE 1 8536 17.61 <.0001 17.61 <.0001
HOME_VAL 1 8536 12.18 0.0005 12.18 0.0005
PARENT1 1 8536 3.40 0.0652 3.40 0.0651
MSTATUS 1 8536 6.12 0.0134 6.12 0.0134
CAR_TYPE 5 8536 7.92 <.0001 39.61 <.0001
CAR_AGE 1 8536 7.91 0.0049 7.91 0.0049
REVOKED 1 8536 6.52 0.0107 6.52 0.0106
KIDSDRIV 1 8536 12.59 0.0004 12.59 0.0004
TIF 1 8536 16.01 <.0001 16.01 <.0001
BIRTH 1 8536 0.04 0.8404 0.04 0.8404

Step 17

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8555
Missing Values 1747

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8531 1154524.1721 135.3328
Scaled Deviance 8531 2505.8091 0.2937
Pearson Chi-Square 8531 3930565.0194 460.7391
Scaled Pearson X2 8531 8531.0000 1.0000
Log Likelihood   -1252.9046  
Full Log Likelihood   -1252.9046  
AIC (smaller is better)   2553.8091  
AICC (smaller is better)   2553.9498  
BIC (smaller is better)   2723.1116  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.7190 0.2846 6.1612 7.2768 557.42 <.0001
URBANICITY Highly Urban/ Urban 1 1.7176 0.1282 1.4662 1.9689 179.37 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0789 0.0167 0.0463 0.1116 22.44 <.0001
OCCUPATION Clerical 1 0.0845 0.1366 -0.1833 0.3523 0.38 0.5363
OCCUPATION Doctor 1 -0.8323 0.3144 -1.4485 -0.2161 7.01 0.0081
OCCUPATION Home Maker 1 -0.0711 0.1764 -0.4169 0.2748 0.16 0.6872
OCCUPATION Lawyer 1 -0.1429 0.1913 -0.5179 0.2321 0.56 0.4552
OCCUPATION Manager 1 -0.9425 0.1733 -1.2821 -0.6029 29.58 <.0001
OCCUPATION Professional 1 0.0241 0.1424 -0.2549 0.3031 0.03 0.8656
OCCUPATION Student 1 -0.0380 0.1559 -0.3435 0.2675 0.06 0.8073
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4885 0.1165 0.2602 0.7168 17.59 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 12.12 0.0005
PARENT1 No 1 -0.2380 0.1299 -0.4925 0.0165 3.36 0.0668
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2675 0.1084 -0.4799 -0.0550 6.09 0.0136
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5561 0.1117 -0.7750 -0.3371 24.77 <.0001
CAR_TYPE Panel Truck 1 -0.0047 0.1906 -0.3782 0.3688 0.00 0.9804
CAR_TYPE Pickup 1 -0.2408 0.1266 -0.4888 0.0073 3.62 0.0571
CAR_TYPE Sports Car 1 0.1272 0.1280 -0.1236 0.3780 0.99 0.3202
CAR_TYPE Van 1 0.1244 0.1571 -0.1834 0.4323 0.63 0.4283
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0246 0.0088 -0.0418 -0.0074 7.87 0.0050
REVOKED No 1 -0.2762 0.1081 -0.4882 -0.0643 6.53 0.0106
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2538 0.0715 0.1137 0.3939 12.61 0.0004
TIF   1 -0.0398 0.0099 -0.0592 -0.0203 16.00 <.0001
AGE   1 0.0009 0.0047 -0.0083 0.0100 0.03 0.8535
Scale   0 21.4648 0.0000 21.4648 21.4648    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8531 185.96 <.0001 185.96 <.0001
MVR_PTS 1 8531 22.50 <.0001 22.50 <.0001
OCCUPATION 7 8531 6.67 <.0001 46.68 <.0001
CAR_USE 1 8531 17.61 <.0001 17.61 <.0001
HOME_VAL 1 8531 12.14 0.0005 12.14 0.0005
PARENT1 1 8531 3.36 0.0668 3.36 0.0668
MSTATUS 1 8531 6.10 0.0136 6.10 0.0136
CAR_TYPE 5 8531 7.88 <.0001 39.41 <.0001
CAR_AGE 1 8531 7.88 0.0050 7.88 0.0050
REVOKED 1 8531 6.53 0.0106 6.53 0.0106
KIDSDRIV 1 8531 12.61 0.0004 12.61 0.0004
TIF 1 8531 16.04 <.0001 16.04 <.0001
AGE 1 8531 0.03 0.8535 0.03 0.8535

Step 18

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8560
Missing Values 1742

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8536 1148586.5980 134.5579
Scaled Deviance 8536 2388.1072 0.2798
Pearson Chi-Square 8536 4105483.7851 480.9611
Scaled Pearson X2 8536 8536.0000 1.0000
Log Likelihood   -1194.0536  
Full Log Likelihood   -1194.0536  
AIC (smaller is better)   2436.1072  
AICC (smaller is better)   2436.2478  
BIC (smaller is better)   2605.4237  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.4053 0.2471 5.9211 6.8896 672.16 <.0001
URBANICITY Highly Urban/ Urban 1 1.7542 0.1308 1.4978 2.0106 179.80 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0773 0.0170 0.0439 0.1107 20.57 <.0001
OCCUPATION Clerical 1 0.0889 0.1394 -0.1843 0.3621 0.41 0.5236
OCCUPATION Doctor 1 -0.8123 0.3207 -1.4408 -0.1839 6.42 0.0113
OCCUPATION Home Maker 1 -0.0675 0.1801 -0.4206 0.2855 0.14 0.7078
OCCUPATION Lawyer 1 -0.1271 0.1945 -0.5084 0.2542 0.43 0.5135
OCCUPATION Manager 1 -0.9243 0.1776 -1.2723 -0.5763 27.10 <.0001
OCCUPATION Professional 1 0.0289 0.1456 -0.2566 0.3143 0.04 0.8429
OCCUPATION Student 1 -0.0101 0.1591 -0.3218 0.3017 0.00 0.9496
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.5032 0.1192 0.2696 0.7368 17.82 <.0001
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 11.49 0.0007
PARENT1 No 1 -0.2521 0.1268 -0.5007 -0.0036 3.95 0.0467
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2617 0.1104 -0.4782 -0.0452 5.61 0.0178
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5534 0.1143 -0.7773 -0.3294 23.45 <.0001
CAR_TYPE Panel Truck 1 -0.0089 0.1949 -0.3909 0.3731 0.00 0.9637
CAR_TYPE Pickup 1 -0.2393 0.1293 -0.4926 0.0141 3.43 0.0641
CAR_TYPE Sports Car 1 0.1267 0.1307 -0.1295 0.3828 0.94 0.3324
CAR_TYPE Van 1 0.1348 0.1606 -0.1800 0.4496 0.70 0.4014
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0255 0.0090 -0.0431 -0.0079 8.08 0.0045
REVOKED No 1 -0.2758 0.1105 -0.4924 -0.0592 6.23 0.0126
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2566 0.0728 0.1139 0.3994 12.41 0.0004
TIF   1 -0.0385 0.0102 -0.0584 -0.0185 14.33 0.0002
TRAVTIME   1 0.0091 0.0026 0.0041 0.0142 12.49 0.0004
Scale   0 21.9308 0.0000 21.9308 21.9308    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8536 185.96 <.0001 185.96 <.0001
MVR_PTS 1 8536 20.61 <.0001 20.61 <.0001
OCCUPATION 7 8536 6.17 <.0001 43.16 <.0001
CAR_USE 1 8536 17.85 <.0001 17.85 <.0001
HOME_VAL 1 8536 11.50 0.0007 11.50 0.0007
PARENT1 1 8536 3.96 0.0467 3.96 0.0467
MSTATUS 1 8536 5.62 0.0178 5.62 0.0178
CAR_TYPE 5 8536 7.53 <.0001 37.65 <.0001
CAR_AGE 1 8536 8.10 0.0044 8.10 0.0044
REVOKED 1 8536 6.23 0.0125 6.23 0.0125
KIDSDRIV 1 8536 12.41 0.0004 12.41 0.0004
TIF 1 8536 14.36 0.0002 14.36 0.0002
TRAVTIME 1 8536 12.48 0.0004 12.48 0.0004

Step 19

Elegibles (aggregated model threshold = 0.05)

The GENMOD Procedure

The GENMOD Procedure

Model Information

Model Information
Data Set MYDATA.CLAIM_HISTORY  
Distribution User  
Link Function Log  
Dependent Variable CLM_AMT Claim Amount

Number of Observations

Number of Observations Read 10302
Number of Observations Used 8099
Missing Values 2203

Class Level Information

Class Level Information
Class Levels Values
URBANICITY 2 Highly Urban/ Urban z_Highly Rural/ Rural
OCCUPATION 8 Clerical Doctor Home Maker Lawyer Manager Professional Student z_Blue Collar
CAR_USE 2 Commercial Private
PARENT1 2 No Yes
MSTATUS 2 Yes z_No
CAR_TYPE 6 Minivan Panel Truck Pickup Sports Car Van z_SUV
REVOKED 2 No Yes

Criteria For Assessing Goodness Of Fit

Criteria For Assessing Goodness Of Fit
Criterion DF Value Value/DF
Deviance 8074 1077842.4189 133.4955
Scaled Deviance 8074 2220.4609 0.2750
Pearson Chi-Square 8074 3919231.3101 485.4138
Scaled Pearson X2 8074 8074.0000 1.0000
Log Likelihood   -1110.2304  
Full Log Likelihood   -1110.2304  
AIC (smaller is better)   2270.4609  
AICC (smaller is better)   2270.6219  
BIC (smaller is better)   2445.4482  

Convergence Status

Algorithm converged.

Analysis Of Parameter Estimates

Analysis Of Maximum Likelihood Parameter Estimates
Parameter   DF Estimate Standard
Error
Wald 95% Confidence Limits Wald Chi-Square Pr > ChiSq
Intercept   1 6.4581 0.2910 5.8878 7.0285 492.54 <.0001
URBANICITY Highly Urban/ Urban 1 1.7395 0.1353 1.4744 2.0046 165.38 <.0001
URBANICITY z_Highly Rural/ Rural 0 0.0000 0.0000 0.0000 0.0000 . .
MVR_PTS   1 0.0766 0.0176 0.0420 0.1111 18.84 <.0001
OCCUPATION Clerical 1 0.0202 0.1454 -0.2647 0.3052 0.02 0.8893
OCCUPATION Doctor 1 -0.8012 0.3278 -1.4436 -0.1588 5.98 0.0145
OCCUPATION Home Maker 1 -0.0966 0.1977 -0.4840 0.2908 0.24 0.6250
OCCUPATION Lawyer 1 -0.1485 0.2021 -0.5447 0.2476 0.54 0.4625
OCCUPATION Manager 1 -0.9877 0.1848 -1.3500 -0.6254 28.56 <.0001
OCCUPATION Professional 1 0.0183 0.1518 -0.2793 0.3158 0.01 0.9042
OCCUPATION Student 1 -0.0032 0.1778 -0.3517 0.3454 0.00 0.9857
OCCUPATION z_Blue Collar 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_USE Commercial 1 0.4644 0.1240 0.2214 0.7074 14.03 0.0002
CAR_USE Private 0 0.0000 0.0000 0.0000 0.0000 . .
HOME_VAL   1 -0.0000 0.0000 -0.0000 -0.0000 9.42 0.0021
PARENT1 No 1 -0.2366 0.1314 -0.4942 0.0209 3.24 0.0717
PARENT1 Yes 0 0.0000 0.0000 0.0000 0.0000 . .
MSTATUS Yes 1 -0.2898 0.1145 -0.5142 -0.0654 6.41 0.0114
MSTATUS z_No 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_TYPE Minivan 1 -0.5909 0.1184 -0.8230 -0.3588 24.90 <.0001
CAR_TYPE Panel Truck 1 0.0189 0.2014 -0.3758 0.4136 0.01 0.9252
CAR_TYPE Pickup 1 -0.2440 0.1332 -0.5051 0.0170 3.36 0.0669
CAR_TYPE Sports Car 1 0.1462 0.1345 -0.1174 0.4098 1.18 0.2770
CAR_TYPE Van 1 0.0651 0.1678 -0.2637 0.3939 0.15 0.6981
CAR_TYPE z_SUV 0 0.0000 0.0000 0.0000 0.0000 . .
CAR_AGE   1 -0.0291 0.0093 -0.0473 -0.0109 9.85 0.0017
REVOKED No 1 -0.2935 0.1140 -0.5170 -0.0700 6.62 0.0101
REVOKED Yes 0 0.0000 0.0000 0.0000 0.0000 . .
KIDSDRIV   1 0.2477 0.0758 0.0991 0.3963 10.68 0.0011
TIF   1 -0.0360 0.0105 -0.0565 -0.0154 11.75 0.0006
TRAVTIME   1 0.0093 0.0027 0.0041 0.0145 12.12 0.0005
YOJ   1 0.0014 0.0118 -0.0216 0.0245 0.01 0.9039
Scale   0 22.0321 0.0000 22.0321 22.0321    

Note:The scale parameter was estimated by the square root of Pearson's Chi-Square/DOF.

LR Statistics For Type 3 Analysis - Scaled

LR Statistics For Type 3 Analysis
Source Num DF Den DF F Value Pr > F Chi-Square Pr > ChiSq
URBANICITY 1 8074 171.04 <.0001 171.04 <.0001
MVR_PTS 1 8074 18.87 <.0001 18.87 <.0001
OCCUPATION 7 8074 6.00 <.0001 42.03 <.0001
CAR_USE 1 8074 14.05 0.0002 14.05 0.0002
HOME_VAL 1 8074 9.43 0.0021 9.43 0.0021
PARENT1 1 8074 3.25 0.0717 3.25 0.0716
MSTATUS 1 8074 6.41 0.0114 6.41 0.0113
CAR_TYPE 5 8074 7.70 <.0001 38.48 <.0001
CAR_AGE 1 8074 9.87 0.0017 9.87 0.0017
REVOKED 1 8074 6.63 0.0100 6.63 0.0100
KIDSDRIV 1 8074 10.68 0.0011 10.68 0.0011
TIF 1 8074 11.77 0.0006 11.77 0.0006
TRAVTIME 1 8074 12.11 0.0005 12.11 0.0005
YOJ 1 8074 0.01 0.9039 0.01 0.9039

Selected Variables

The PRINT Procedure

Data Set WORK.STAY

Obs Source NumDF DenDF FValue ProbF ChiSq ProbChiSq Method
1 URBANICITY 1 8074 171.04 <.0001 171.04 <.0001 LR
2 MVR_PTS 1 8074 18.87 <.0001 18.87 <.0001 LR
3 OCCUPATION 7 8074 6.00 <.0001 42.03 <.0001 LR
4 CAR_USE 1 8074 14.05 0.0002 14.05 0.0002 LR
5 HOME_VAL 1 8074 9.43 0.0021 9.43 0.0021 LR
6 PARENT1 1 8074 3.25 0.0717 3.25 0.0716 LR
7 MSTATUS 1 8074 6.41 0.0114 6.41 0.0113 LR
8 CAR_TYPE 5 8074 7.70 <.0001 38.48 <.0001 LR
9 CAR_AGE 1 8074 9.87 0.0017 9.87 0.0017 LR
10 REVOKED 1 8074 6.63 0.0100 6.63 0.0100 LR
11 KIDSDRIV 1 8074 10.68 0.0011 10.68 0.0011 LR
12 TIF 1 8074 11.77 0.0006 11.77 0.0006 LR
13 TRAVTIME 1 8074 12.11 0.0005 12.11 0.0005 LR

In order to minimize the number of models that needed to be run, a stepwise selection model was created, considering susceptible for entry all those variables with a p-value in a single model less than 0.2, and with a p-value in the aggregated model of less.

The execution of the above two macros create three outputs:

  • A summary table called Aggregate with the all potential variables in a single GLM sorted by its p-values
  • A summary table named Eligible with those selected variables with a threshold p-value less or equal to 0.2 in the single GLM. Sorted by p-value
  • A summary table with the selected variables
  • The whole variable selection process step by step

The selected variables. The table shows that only 11 of the 22 original potential variables have been selected.

Conclusion:

The above lines show how the variable selection algorithm selects only 11 of the 22 original potential variables. The SAS macros: - Performs a stepwise selection variable based mainly on a forward selection process - The penultimate step in the selection process shows the selected model and after the last step a summary table of the selection process is showed too - The macro needs around 50 minutes to get results with a dataset of one million observations and around 13 variables - The selection criteria is based on the p-values of the type 3 analysis - With small changes the macro is useful in a context with a GENMOD procedure under Gamma, Inverse Gaussian, Log-Normal, Binomial, Gaussian, Poisson, Negative Binomial, Zero Inflated Poisson and Zero inflated Negative Binomial error functions - In case of one or several model doesn’t converge use the NODMSSYNCHK option in the SAS code to avoid any stop in the execution - The specification of the model is the same that the Tweedie macro used in the NAR project - This macro only admits main factors. So, it is not possible to include interactions in the model statement of the GENMODE procedure. To include interactions it is needed create a new variable with the interaction.

References: